Interest Rate-利率
A small amount of money now may be equivalent in value to a larger amount received at a future date.
一小笔现在的前,可能相当于未来某一时间的更大金额.
Interest rates are set in the marketplace by the forces of supply and demand.
利率在市场上由供求决定
※一些短期政府债券也被视为名义无风险利率
利率也被称为
- required rate of return-必要回报率
- discount rate-折现率
- opportunity cost-机会成本
opportunity cost is the value that investors forgo by choosing a particular course of action
机会成本是投资者选择了某个行为而放弃掉的价值
The time value of money-货币的时间价值
The time value of money as a topic in investment deals with equivalence relationships between cash flows with different rate
作为投资领域的一个概念,货币的时间价值处理的是不同日期之间的现金流的等价关系
※时间线上方出现的数字代表现金流入,下方出现的数字代表现金流出(不论带不带符号)
The Future Value of a Single Cash Flow-单一现金流的未来价值
Principle is the amount of funds originally invested
本金是最初的投资金额
The Frequency of Compounding-复利的频率
Continuous Compounding-连续复利
统计学中,数据分为
- continuous data 连续数据 (在一定区间内可以任意取值的数据叫连续数据。比如:体重:0.542..kg, 时间:1.234...s)
- discrete data 离散数据 (离散数据是指其数值只能用自然数或整数单位计算的数据。比如: 硬币:1个 学生:5个)
Stated and Effective Rates-名义利率和实际利率
假设名义利率为6%,计息期数为1年,根据计息频率
Frequency | rate of interest per period | number of period | FV | |
---|---|---|---|---|
annually 每年 | 6% / 1 = 6% | 1 * 1 = 1 | 1.06 | 1.06 |
semi-annually 每半年 | 6% / 2 = 3% | 2 * 1 = 2 | 1.03 ** 2 | 1.0609 |
quarterly 每季度 | 6% / 4 = 1.5% | 4 * 1 = 4 | 1.015 ** 4 | 1.061364 |
monthly 每月 | 6% / 12 = 0.5% | 12 * 1 = 12 | 1.005 ** 12 | 1.061678 |
daily 每日 | 6% / 365 = 0.0164% | 365 * 1 = 365 | 1.00164 ** 365 | 1.061831 |
continuously 连续 | 6% | 1 | e ** (0.06 * 1) | 1.061837 |
FV中的**2代表平方
This result leads us to a distinction between the stated annual interest rate and the effective annual rate(EAR)
这个结果引出我们要讨论的名义年利率和实际年利率的区别
Python代码实现
import numpy as np
class Quantitative:
def EAR_get(self,rs,m=None) -> float:
"""
获取实际利率(Effectice Annual Rate)
In:
rs: 名义利率
m: 计息频次, None代表连续计息
Out:
EAR:实际利率
"""
if not m:
ear = np.exp(rs) - 1
else:
ear = (1 + rs/m) ** m - 1
return rar
def fv_get(self,pv,rs,N,m=None) ->float:
"""
获取单一现金流的未来价值
In:
pv:现在价值
rs:名义利率
N:计息期数
m:计息频次,None代表连续计息
Out:
fv:未来价值
"""
ear = self.EAR_get(rs,m)
fv = pv * ((1+ear) ** N)
return fv